
1

Pascal-M

M-code documentation V1.4

Summary

This document describes the M-code machine

How to implement, loader, objectcode, instructions.

Authors

Mark. D. Rustad (initial version), Hans Otten (current maintainer

Revisions:

V1.0 9 september 1978 (Mark D. Rustad),

V1.3 1986 Hans Otten

V1.4 August 2020 Hans Otten

2

M-code machine

The Pascal-M compiler produces objectcode for the virtual M-code machine.

This is a variant of the P-code machine that is defined in the design of the Px

interpreters (see the Pascal P4 source, books, design articles).

The M-code machine can be implemented by an interpreter

At the moment several interpreters of M-code interpreters are available (others have

existed but are lost for now):

- V1 KIM-1 6502 code interpreter in assembler

- V1 Pascal interpreter

- V1.3 VAX/VMS Pascal interpreter

- V1.4 Freepascal interpreter

V1.0 of the M-code machine is defined in Preliminary M-code description 1978 .doc

Changes between V1.0 and V1.4 are:

- New instructions C2, SFA – Set file address C3 GFA Get File Address

- New standard procedures OD 0E, RSFRWW, 0F STT , 10 CLS

- Changes to RDI RLN WRI WLN etc read/write instructions to handle file

address.

Data-representation :

 character : 1 byte on stack

 +------------------+

Addr -> ! ascii code char !

 +------------------+

 boolean : 2 bytes on stack

 +------------------+

 ! 0 !

 +------------------+

Addr -> ! true or false ! true = 1, false = 0

 +------------------+

 integer : 2 bytes on stack

 +-------------------+

 ! most sign part ! div 256 signed

 +-------------------+

Addr -> ! least sign part ! mod 256 signed

 +-------------------+

 pointer : 2 bytes on stack

3

 +-------------------+

 ! most sign part ! div 256 signed

 +-------------------+

Addr -> ! least sign part ! mod 256 signed

 +-------------------+

Addresses, pointers such as stackpointer, markpointer etc always point to the least

significant byte of the data-item.

Examples are given above.

Stack layout as given in the interpreting procedures gives an impression before and

after the instruction execution. The stack is actually growing from high addresses to

low addresses. For example, reserving space on the stack requires decrementing of

the stackpointer.

4

Memory layout :

 addresses

 0 +----------------------------+

 ! !

 ! !

 code from compiler

 ! !

 ! !

 +----------------------------+

 ! !

 ! !

 heap space

 ! !

 ! !

 +----------------------------+

 ! !

 ! !

 free space > 40

 ! !

 ! !

 +----------------------------+

 ! !

 ! !

 stack space

 ! !

 ! !

 +----------------------------+

 ! auto start code !

 ! !

 maxstore +----------------------------+

5

M-code machine

The M-code machine is a strict stack computer.following the P-code design (see the

book by Pemberton for example, chapter 10)

Registers are:

Program counter

Stackpointer

Heap pointer

Markpointer

Memory is 64Kbyte, byte addressable.

At start of the M-code machine:

 Heappointer starts after the last byte loaded from objectcode

Program counter := maxstore - 4 ;

 Stackpointer = maxstore - 5 ;

 markpointer := stackpointer

Main program fixed in upper memory

MST0

CUP1 0

CSP STOP

Stored as:

 store [maxstore - 4] := 48 ; (* MST0 *)

 store [maxstore - 3] := 190 ; (* CUP1 *)

 store [maxstore - 2] := 0 ; (* proc nr 0 *)

 store [maxstore - 1] := 189 ; (* CSP *)

 store [maxstore] := 11 ; (* Standard proc Stop

*)

;

6

Object code

The compiler produces objectcode in Px record format.

The object code produced by the PASCAL-M compiler is composed of lines of

standard ASII characters. In most cases, the characters should be interpreted as

hexadecimal digits. Though there are several types of records used in M-code, each

type starts with an ASCII uppercase “P” and ends with the checksum of the record

coded as two hexadecimal digits.

The type of the P-record is determined by the character immediately following the P.

The exact format of each of the different record types is given below.

The P1 record

The P1 record is used to load object code into the interpreter’s program area. The two

hex digits following the P1 P1 indicate how many bytes of object code are in this

record (two hex digits per byte). After the last object code byte is this record’s

checksum byte, again, two hex digits. No load address is specified in this record since

the M-code loader maintains its own current loading address which is automatically

incremented as P1 records are loaded.

A typical P1 record could appear as

P10B09600F9E100902BD0CA159

The P2 record

The P2 record is used for “satisfying” forward references by going back to a

previously loaded area in the program and inserting an address. In this case, the four

hex digitis appearing after the P2 specify the byte address to be modified (relative to

the beginning of the code) and the next four hex digits specify the value to be inserted

into that location and the following one (since the planted addresses are always two

bytes in length).

A typical P2 record could appear as:

P20001000AFA

The P4 record

The P4 record is used to declare procedure/function entry addresses and specify the

name and number of the procedure. The two hex digits immediately following the P4

specify this procedure’s number and the next 8 ASCII characters are the first 8

characters of the procedure’s name (space-filled if necessary). The procedure name

specification in this case is an exception to the general rule that m-code consists of

hex digits. The checksum of this record does include the ASCII characters added in

according to their ASCII values.

A P4 record could appear as:

P401OUT 66

The P9 record

7

The P9 record signifies the end of loading. At some point, the P9 record should

include the number of object records loaded (for error detection purposes) but does

not at this time.

A P9 record appears as:

P9

8

M-code operators

The m-code interpreter actually executes the instruction set of a hypothetical stack

computer. Although the design of m-code was based on the p-code produced by the

P2 compiler, numerous changes have been made. Following is a description of each

of the m-code operators.

0x, LDCIS – Load small integer constant

The LDCIS instruction pushes a small integer constant in the range of [0..15] onto the

stack in standard integer form (16 bit representation). The constant is in the lower 4

bits of the instruction byte itself, allowing the entire operation to only require a single

byte of M-code.

1X YY, LDAS – Load short address

The LDAS instruction loads the absolute address of the Yyth byte at the Xth level

onto the stack. This instruction is only generated for offsets less than 256 bytes from a

base address.

2X YY YY, LDA – Load Address

The LDA instruction pushes the absolute address of the YYYYth byte at the Xth level

onto the stack.

3X, MSTO – Mark stack at Xth level without return bytes

The MSTO instruction marks the stack in preparation for a procedure call. The MSTN

instruction is used for a function call.

4X, MSTN YY – Mark stack at Xth level with return bytes

The MSTN instruction marks the stack in preparation for a function call.

5X YY, LOD1 – Load 1-byte item on stack

The LOD1 instruction loads the byte YYth at the Xth level on the stack. Before

pushing the item onto the stack, it is expanded to 16 bits.

6X YY, LDO2 – Load 1-byte item on stack

The LOD1 instruction loads the byte YYth and YY=1th bytes at the Xth level on the

stack.

7X YY, STR1 – Store 1-byte data into memory

The STR1 instruction pulls one 16-bit item off the stack and stores the least

significant byte into the YYth level

 pulls word from stack and stores least significant byte at level at offset following

opcode

 Stack layout :

 start end

 ! !

 +----------------------------+

9

 ! value !<- stack

 +----------------------------+

 stack ->! !

8X YY. STR2 - Store 2-byte data item into memory

The STR2 instruction pulls one 16-bit item off the stack and stores the bytes into the

YYth bytes at the Xth level.

pulls word from stack and stores word

 at level at offset following opcode

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! value !<- stack

 +----------------------------+

 stack ->! !

90, LEQ2 – 2-byte Less than or equal test

The LEQ2 instruction pulls two 2-byte items off the stack and pushes a Boolean item

into the stack. The Boolean item will be a one (true) whenever the item next to the top

of the stack is less than or equal to the item at the top of the stack is less than or equal

to the item at the top of the stack. Otherwise, the Boolean item will be zero (false).

compares for less or equal

 condition tested : first value =< second value

 result : Boolean 1 if less or equal else Boolean 0

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! first value / Boolean !

 +----------------------------+

 ! second value !<- stack

 +----------------------------+

 stack ->! !

91, MFOR – For loop processing instruction

The FOR instruction is placed at the end of every loop. The instruction both initializes

the loop and does the end check dependent upon data on the stack. For this reason, it

is necessary that there are no goto in the language and that no extraneous data be left

on the stack as a result of going through the loop.

10

implements the FOR statement.

 Controls the loop with information on the stack.

 Stored are

 - the address off the loop variable

 - the beginvalue

 - the endvalue

 - a flag word

 The FOR instruction implements a jump-instruction,

 the jump is taken as long as the end-condition is

 not reached.

 The stack is cleaned up if the end-condition is reached.

 The flag word has the following meaning :

 Bit 0 = 0 : the loop variable is a one byte location

 Bit 0 = 1 : the loop variable is a two byte location

 Bit 2 = 0 : to loop

 Bit 2 = 1 : downto loop

 Bit 8 = 0 : loop not initialized

 Bit 8 = 1 : loop initialized

 Stack layout :

 start end

 ! !<- stack if end

 +----------------------------+

 ! address of loop variable !

 +----------------------------+

 ! beginvalue !

 +----------------------------+

 ! endvalue !

 +----------------------------+

 ! flag word !

 +----------------------------+

 stack ->! !<- stack if not

end

92 XX XX, LEQM – Less than or equal for arrays and records.

See 95 – LESM for description

93, LES2 – less than test for 2-byte data items

The LES2 instruction is similar to the LQ2 instruction except it does a “less than“ test.

compares for less or equal

 condition tested : first value < second value

 result : boolean 1 if less or equal else boolean 0

11

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! first value / boolean !

 +----------------------------+

 ! second value !<- stack

 +----------------------------+

 stack ->! !

94, LEQ8 – less or equals test for sets

this is the Is contained in test for sets. It pulls 2 8-byte sets off the stack and compares

them for at least the common bits.

checks if all elements of first set are present

 in second set. Leaves boolean result on the stack.

 Stack layout

 begin end

 ! !

 +----------------------------+

 ! first set / result boolean!

 +----------------------------+

 ! second set ! <- stack

 +----------------------------+

 stack ->! !

95 XX XX, LESM - Less than test for arrays and records

The LESM instruction pulls two addresses off the stack and compares XXXXth bytes.

If the first area is less in value than the area pointed by the second address then a 1

(true) is pushed onto the stack, otherwise a 0 (false) is pushed.

compares for equality of arrays or records

 condition tested : first value < second value

 result : boolean 1 if equal else boolean 0

 size of structure follows opcode

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! first address / boolean !

 +----------------------------+

 ! second address !<--stack

 +----------------------------+

 stack ->! !

12

96, EQU2 – Equal test for 2-byte data items

The EQU2 instruction pulls two 2-byte data items off the stack and pushes a Boolean

item onto the stack. The Boolean item will be a 1 (true) when the items compared are

equal and a 0 (false) otherwise.

compares for equality

 condition tested : first value = second value

 result : boolean 1 if equal else boolean 0

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! first value / boolean !

 +----------------------------+

 ! second value !<- stack

 +----------------------------+

 stack ->! !

97, GEQ8 – Greater than or equal test for sets

This is the Contains test for sets. See 94 instruction. If true it sends a false on the stack

and visa versa due to the generation of a AC – Not instruction following this one by

the Pascal-M compiler.

checks if all elements of second set are present

 in first set. Leaves boolean result on the stack.

 Stack layout

 begin end

 ! !

 +----------------------------+

 ! first set / result boolean!

 +----------------------------+

 ! second set ! <- stack

 +----------------------------+

 stack ->! !

98 XX XX, EQUM – Equal test for arrays and records

The EQUM instruction pulls two addresses off the stack and compares XXXX bytes.

If the two areas are equal a 1 (true) is pushed onto the stack, otherwise a 0 (false) is

pushed on the stack.

compares for equality of arrays or records

 condition tested : first value = second value

 result : boolean 1 if equal else boolean 0

 size of structure follows opcode

 Stack layout :

 start end

13

 ! !

 +----------------------------+

 ! first address / boolean !

 +----------------------------+

 ! second address !<--stack

 +----------------------------+

 stack ->! !

99, EQU8 – Equal test for sets

The EQU8 instruction pulls two byte sets off the stack and compares them. If they are

equal a 1 (true) is pushed onto the stack, otherwise a 0 (false) is pushed on the stack.

compares for equality of sets

 condition tested : first value = second value

 result : boolean 1 if equal else boolean 0

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! first set value / boolean !

 +----------------------------+

 ! second set value !<--stack

 +----------------------------+

 stack ->! !

9A, IND1 – indirectly load 1-byte data item

The IND1 instruction pulls an address off the stack and pushes the byte at that

location onto the stack after expanding it to two bytes(as with the LOD1 instruction).

loads one byte value on stack from address on stack
 Stack layout :

 start end

 ! !

 +----------------------------+

 ! address/value in low byte !

 +----------------------------+

 stack ->! !<- stack

9B, IND2 – Indirectly load 2-byte data item

The IND2 instruction pulls an address off the stack and pushes the byte at the location

and the folling one onto the stack.

loads two byte value on stack from address on stack

 Stack layout :

 start end

 ! !

 +----------------------------+

14

 ! address/value !

 +----------------------------+

 stack ->! ! <- stack

9C, IND8 – indirectly load 8-byte data item

The IND8 instruction pulls an address off the stack and pushes that byte and the

following 7 onto the stack.

 (* loads two byte value on stack from address on stack
 Stack layout :

 start end

 ! !

 +----------------------------+

 ! address/ set value !

 +----------------------------+

 stack ->! set value !

 +----------------------------+

 ! set value !

 +----------------------------+

 ! set value !

 +----------------------------+

 ! !<- stack

9D, STO1 – Indirectly store 1-byte data item

The STO1 instruction pulls 2-bytes of data off the stack and an address. The least

significant byte of data is stored at the address that was pulled off the stack.

indirectly stores 1 byte from stack at address on stack

 Stack layout :

 begin end

 ! ! <- stack

 +----------------------------+

 ! address !

 +----------------------------+

 ! value low byte !

 +----------------------------+

 stack ->! !

9E, STO2 Indirectly store 2-byte data item

The STO2 instruction pulls 2-bytes data off the stack and an address. The 2 bytes of

data are stored into memory starting at the address that was pulled off the stack.

indirectly stores 2 bytes from stack at address on stack
 Stack layout :
 begin end

 ! ! <- stack

15

 +----------------------------+

 ! address !

 +----------------------------+

 ! value !

 +----------------------------+

 stack ->! !

9F, STO8 – Indirectly store 8-byte data item.

The STO8 instruction pulls 8-bytes of data off the stack and an address. The 8 bytes

of data are stored into memory starting at the address that was pulled off the stack.

indirectly stores 2 bytes from stack at address on stack
 Stack layout :

 begin end

 ! ! <- stack

 +----------------------------+

 ! address !

 +----------------------------+

 ! set value 8 bytes !

 +----------------------------+

 stack ->! !

A0 XX XX, LDC – Load 2-byte constant

The LDC instruction pushes the 2-byte constant, XXXX onto the stack.

loads constant following opcode on the stack
 Stack layout :

 begin end

 ! !

 +----------------------------+

 stack ->! constant !

 +----------------------------+

 ! !<- stack

A1, RETP – Return from procedure (or function)

The RETP instruction returns from the current procedure, cleaning up the stack

appropiately.

Returns from procedure/function, cleans up

 stack by removing local variables and

 linkframe

 Situation before :

 before after

 +----------------------------+

 markp --> ! baseadr ! <--- stack

 +----------------------------+

16

 ! mpsave !

 +----------------------------+

 ! pcsave !

 +----------------------------+

 ! !

 ! local variables !

 ! !

 +----------------------------+

 stack --> !

A2, ADI – Add integer

The DVI instruction pulls two 2-byte integers off the stack adds them together and

pushes the result onto the stack.

adds two integers on stack, leaves integer

 result on stack.

 evaluates expression :

 result := first value / second value

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! first value / result !

 +----------------------------+

 ! second value ! <- stack

 +----------------------------+

 stack ->! !

A3, MAND – Boolean AND

The MAND instruction pulls two Boolean items off the stack, logical AND-s them

together and pushes the result into the stack.

Performs AND on two booleans on the stack,

 leaves boolean result on stack.

 Booleans placed on stack as two bytes,

 low byte contains 0 if false.

 evaluates expression :

 result := first boolean AND second boolean.

 (true is 1 if first and second true)

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! first boolean/ result !

 +----------------------------+

 ! second boolean ! <- stack

 +----------------------------+

17

 stack ->! !

A4, DIF – Set difference

The DIF instruction pulls two 8-byte sets off the stack, finds the difference between

the two by logically AND-ing and Exclusive-OR-ing each byte and pushes the result

onto the stack.

gives the difference of two sets on the stack,

 leaves result on the stack. Collects in result

 all elements present in first set and not in second set.

 Stack layout

 begin end

 ! !

 +----------------------------+

 ! first set / result set !

 +----------------------------+

 ! second set ! <- stack

 +----------------------------+

 stack ->!

A5, DVI -- Divide integer

The DVI instruction pulls two 2-byte integers off the stack and divides the top of the

stack into the second and pushes the result onto the stack.

divides two integers on stack, leaves integer

 result on stack. Signed division.

 evaluates expression :

 result := first value / second value

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! first value / result !

 +----------------------------+

 ! second value ! <- stack

 +----------------------------+

 stack ->!

A6, INN – Test if element in set

The INN instruction pulls an 8-byte set off the stack and a 2-byte integer. If the set

element indicated by the integer is in the set, a 1 (true) will be pushed on the stack,

otherwise a 0 (false) will be pushed on the stack.

The is member of test for sets is implemented

 with this instruction. Leaves boolean true

 on stack if member in set.

18

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! number of member/ result !

 +----------------------------+

 ! set value ! <- stack

 +----------------------------+

 stack ->! !

A7, INT – Set interaction

The INT instruction pulls tw0 8-byte sets off the stack and finds the intersection by

logically AND-ing each byte together. The intersection is then pushed onto the stack.

gives the intersection of two sets on the stack,

 leaves result on the stack. Collects in result

 all elements present in first and in second set.

 Stack layout

 begin end

 ! !

 +----------------------------+

 ! first set / result set !

 +----------------------------+

 ! second set ! <- stack

 +----------------------------+

 stack ->! !

A8, IOR – Inclusive OR

The IOR instruction pulls two Boolean items off the stack, logically OR-s them

together and pushes the result on the stack.

Performs OR on two booleans on the stack,

 leaves boolean result on stack.

 Booleans placed on stack as two bytes,

 low byte contains 0 if false.

 evaluates expression :

 result := first boolean OR second boolean.

 (true is 1 if first or second true)

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! first boolean/ result !

 +----------------------------+

 ! second boolean ! <- stack

 +----------------------------+

 stack ->! !

19

A9, MMOD – Modulus function

The MMOD isntruction pulls two integers off the stack, and finds the modulus by

taking the remainder of dividing the top of the stack into the second. The resulting

remainder is then pushed onto the stack.

modulus of two integers on stack, leaves integer

 result on stack. Signed division.

 evaluates expression :

 result := first value mod second value

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! first value / result !

 +----------------------------+

 ! second value ! <- stack

 +----------------------------+

 stack ->! !

AA, MPI – Multiply integer

The MPI instruction pulls two integers off the stack, multiplies them and pushes the

result onto the stack.

multiplies two integers on stack, leaves integer

 result on stack. Signed division.

 evaluates expression :

 result := first value * second value

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! first value / result !

 +----------------------------+

 ! second value ! <- stack

 +----------------------------+

 stack ->! !

AB, NGI – Negate integer

The NGI instruction pulls the integer off the stack, changes its sign and pushes it back

onto the stack.

changes sign of integer on stack

 evaluates expression :

 result := - result

 Stack layout :

 start end

 ! !

20

 +----------------------------+

 ! result !

 +----------------------------+

 stack ->! !<- stack

AC, MNOT – negate Boolean

The MNOT instruction pulls one Boolean item of the stack, logically complements it

and pushes it back onto the stack.

* complements boolean value on stack

 evaluates expression :

 result := not result

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! result !

 +----------------------------+

 stack ->! !<- stack

AD, SBI – Subtract Integer

The DVI instruction pulls two 2-byte integers off the stack and subtracts the top of the

stack from the next and pushes the difference onto the stack.

subtracts two integers on stack, leaves integer

 result on stack.

 evaluates expression :

 result := first value - second value

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! first value / result !

 +----------------------------+

 ! second value ! <- stack

 +----------------------------+

 stack ->! !

AE, SGS – Generate singleton set

The SGS instruction pulls an integer off the stack, generates a SET with that integer

as its only element and pushes the generated set onto the stack.

Generate singleton set on stack.

 On stack number is present as integer

 of set member to be set, other set members

 not present.

 Stack layout :

21

 start end

 ! !

 +----------------------------+

 stack ->! setnumber / set !<-- stack

 +----------------------------+

 ! !

AF, UNI – Set union

The UNI instruction pulls two sets of the stack, logically O-s them together and

pushes the resulting set onto the stack.

gives the union of two sets on the stack,

 leaves result on the stack. Collects in result

 all elements present in either input set.

 Stack layout

 begin end

 ! !

 +----------------------------+

 ! first set / result set !

 +----------------------------+

 ! second set ! <- stack

 +----------------------------+

 stack ->! !

B0 X X, LNC – Load negative constant

The LNC instruction loads the negative of XXXX onto the stack.

loads negative value on stack with value after opcode

 Stack layout

 begin end

 ! !

 +----------------------------+

 stack ->! negative value !

 +----------------------------+

 ! !<- stack

B1 X X, FJP – False jump

The FJP instruction pulls one Boolean off the stack. If the item is zero (false), control

will transfer to the XXXXth byte of the current procedure, otherwise control passes to

the next instruction in sequence.

false jump, taken if value on stack is false, zero

 jump performed with UJP

 Stack layout

 begin end

 ! !

 +----------------------------+

22

 ! boolean ! <- stack

 +----------------------------+

 stack ->! !

B2 X X, UJP – unconditional jump

The UJP instruction always transfers control to the XXXXth byte of the procedure,

B3 X X, DEC – Decrement

The INC instruction pulls one 2-byte integer off the stack, detracts XX from it and

pushes the result back onto the stack.

decrement value on stack with value after opcode and

 leave result in same stack position

 Stack layout

 begin end

 ! !

 +----------------------------+

 ! value /value decremented !

 +----------------------------+

 stack ->! !<- stack

B4 X X, INC – Increment

The INC instruction pulls one 2-byte integer off the stack, adds XX to it and pushes

the result back onto the stack.

increment value on stack with value after opcode and

 leave result in same stack position

 Stack layout

 begin end

 ! !

 +----------------------------+

 ! value /value incremented !

 +----------------------------+

 stack ->! !<- stack

B5 X X, ENT – Enter block

The ENT instruction is always generated as the first instruction of the procedure. It

reserves stack space for all variables local to the procedure.

Reserve stack space for all variables local

 to procedure.

 PC (high), PC + 1 (low) contain nr of bytes to reserve.

 Stack layout

 begin end

 ! !

23

 +----------------------------+

 stack ->! room for local variables !

 .

 .

 ! !

 +----------------------------+

 ! !<- stack

B6 -----, CAS – Case statement procedure

The CAS instruction does most of the processing for the case statement. It occupies a

variable amount of memory because the instruction includes the complete jumptable

for the case statement.

processes case - statement.

 Following the opcode the complete jump-table

 is present including the otherwise part

 and the beginning and endvalue of the label:

 Stack layout

 begin end

 ! !<- stack

 +----------------------------+

 stack ->! current label value !

 +----------------------------+

 ! !

 jumptable (from low to high addresses):

 +----------------------------+

 ! start value label in list !

 +----------------------------+

 ! end value label in list !

 +----------------------------+

 ! address of otherwise part ! (if not

used zero)

 +----------------------------+

 ! address of first label !

 ! routine !

 +----------------------------+

 ! !

 .

 ordered next label routine addresses

 (if not used zero)

 .

 ! !

 +----------------------------+

 ! address of last label !

 ! routine !

 +----------------------------+

24

B7 X X, MOV

C4 X X X X MOVMVB – Move storage

The MOV instruction is used for moving arrays and records around in memory The

address of the sending field is pulled off the stack and the address of the receiving

field is pulled off next, XXXX bytes are then transferred from the sending to the

receiving field.

moves structures in memory

 Size to move follows opcode as word.

 If MVB then blanks to pad follows size as word.

 Source and destination address are on the stack.

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! destination address ! <- stack

 +----------------------------+

 ! source address !

 +----------------------------+

 stack ->! !

B8, DEC1 – decrement by 1

The INC1 instruction pulls one 2-byte integer off the stack, subtracts 1 from it and

pushes the result back onto the stack.

decrement first value on stack with one and

 leave result in same stack position

 Stack layout

 begin end

 ! !

 +----------------------------+

 ! value /value - 1 !

 +----------------------------+

 stack ->! !<- stack

B9, INC1 – increment by 1

The INC1 instruction pulls one 2-byte integer off the stack, adds 1 to it and pushes the

result back onto the stack.

increment first value on stack with one and

 leave result in same stack position

 Stack layout

 begin end

 ! !

 +----------------------------+

 ! value /value + 1 !

 +----------------------------+

25

 stack ->! !<- stack

BA X X X X X X X X, LDCS – Load set constant

The LDCS instruction loads the 8-byte set, X X X X X X X X, onto the stack.

loads constant set following opcode on the

 stack.

 Stack layout

 begin end

 ! !

 +----------------------------+

 stack ->! set value !

 +----------------------------+

 ! !<- stack

BB X X, CAP – Call assembly procedure

The CAP instruction is used to call an assembly-language routine previously loaded

into a specified address. The actual action of this instruction may be considered to be

system-dependent. Local parameters are stored at the stack with LDCI

 Stack layout

 begin end

 ! ! <- stack

 +----------------------------+

 ->! External address !

 +----------------------------+

 Stack ->! !

See the chapter CAP for more information.

BC X ---===, LCA – Load constant address

The LCA instruction pushes the address of the string starting 2 bytes after the

instruction code onto the stack. The length of the string is specified by XX. For this

reason, all addresses used within the Pascal-M system, whether pointer or array bases,

must refer to the actual hardware address of the item.

Load address of strngfollowing opcode on stack

 pc incremented up to opcode following strng

 Stack layout

 begin end

 ! !

 +----------------------------+

 stack ->! address of strng !

 +----------------------------+

 ! !<- stack

26

BD X, CSP – Call standard procedure X

The CSP instruction is used for calling standard procedures that exist within the

interpreter itself. XX is a numeric index that determines which procedure is to be

executed. Since a large number of possible instruction codes have not been used, it

may be desirable at some point to eliminate this instruction and incorporate all

standard procedures as instructions.

BE XX, CUP1 –simple call user procedure

The CUP1 instruction is used to call procedures whenever the parameter list of the

call does itself not include a function call. XX is a numeric index that determines the

procedure to be called. The compiler assigns a number to each procedure at compile

time. The number is then associated with an address at load time.

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! base address link pointer !

 +----------------------------+

 ! saved markpointer !

 +----------------------------+

 ! saved pc !

 +----------------------------+

 stack -> ! ! <- stack

BF X, CUP2 – Complex Call user procedure

The CUP2 instruction is used to call procedures whenever the parameter list of the

call does include a call to a function. One 2-byte integer is pulled off the stack, which

indicates how many bytes of parameters are being passed. In all other respects, CUP2

functions the same as CUP1.

C0, FIX21 – cleanup stack after call to single-byte function

The FIX21 instruction pushes a single byte of zero onto the stack. This operation is

used to standardize the return value of single-byte-valued functions (such as Boolean

functions). This action then makes the single byte value occupy two bytes on the stack

as is usual.

Transfers one byte item on stack into two byte item,

 byte item moved to low byte of two byte item,

 high byte filled with zero

 Stack layout :

 start end

 ! byte item / 0 !

 +----------------------------+

 stack -> ! ? / byte item !

 +----------------------------+

 ! !<- stack

27

C1, LNS – Load null set

The LNS instruction pushes 8 bytes of zero onto the stack for use a a null set.

Load null set on stack : 8 bytes of zero

 Stack layout :

 start end

 ! !

 +----------------------------+

 stack ->! !

 8 bytes with zero

 ! !

 +----------------------------+

 ! ! <- stack

Additions for V1.1 and up:

C2, SFA – Set file address

The SFA instruction pulls one 2-byte address of the stack and places it in a location

internal to the interpreter for use by all subsequent I/O operations. The address pulled

off the stack is the address of a pointer to the file buffer.

Set file address for all file operations to follow

 filenumber in least sign byte on stack

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! filenumber ! <- stack

 +----------------------------+

 stack ->! !

C3, GFA – Get file address

The GFA instruction pushes the value of the internal file address on the stack.

Get file address for all file operations to follow

 filenumber in least sign byte on stack

 Stack layout :

 start end

 ! !

 +----------------------------+

 stack ->! filenumber !

 +----------------------------+

 ! ! <- stack

28

Standard procedures

00, WRI – Write integer

The WRI procedure writes one integer onto output.

writes integer on stack in specified field width.

 Stack layout

 begin end

 ! !

 +----------------------------+

 ! char code !<- stack

 +----------------------------+

 ! field width !

 +----------------------------+

 stack ->! !

01, WRC – Write character to output

The WRC procedure writes one character to output.

writes character on stack in specified field width.

 Stack layout

 begin end

 ! !

 +----------------------------+

 ! char code ! <- stack

 +----------------------------+

 ! field width !

 +----------------------------+

 stack ->! !

02, WRS – Write string to output

The WRS procedure writes a packed array of characters onto output.

prints strngto output,

 Stack layout

 begin end

 ! !

 +----------------------------+

 ! address !<- stack

 ! of strng !

 +----------------------------+

 ! specified !

 ! field width !

 +----------------------------+

 ! actual !

29

 ! field width !

 +----------------------------+

 stack ->! !

03, RDI – Read integer

The RDI procedure reads an integer from input

reads integer

 if terminal then

 if CR entered then enofline becomes true

 and a space returned

 if CTRL-Z entered then endoffile and endofline

 become true

 at least the value zero is returned,

 also for illegal characters

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! address for integer !<- stack

 +----------------------------+

 stack ->! !

04. RLN – Read to end of line on input

The RLN reads skips to end of line on input.

05, RDC – Read character from input

The RDC procedure reads a single character from input.

reads character from input file

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! address for char !<- stack

 +----------------------------+

 stack ->! !

06, WLN – Write end of line

The WLN procedure writes an end of line

07, NEW – Allocate space on the heap

The NEW procedure pulls a 2-byte integer off the stack which specifies the size of the

area to be allocated and a 2-byte address which specifies the pointer varaible to be set.

Space is then allocated on the heap and the pointer variable set to the address of that

storage.

30

 (* Reserves space in the heap for variable

 pointer address and size to reserve on the stack

 heap pointer updated

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! address of pointer !<- stack

 +----------------------------+

 ! size to reserve on heap !

 +----------------------------+

 stack ->! !

08, EOF – End of file test

The EOF procedure pushes a Boolean item on the stack which is true if an end of file

condition exists.

enters boolean end of file on stack

 Stack layout :

 start end

 ! !

 +----------------------------+

 stack ->! boolean (1 if endoffile) !

 +----------------------------+

 ! !<- stack

09, RST – Reset heap pointer

The RST procedure sets the heap pointer to the value pulled off the stack.

Restores heap pointer to value in pointer

 address of pointer on the stack

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! address of pointer !<- stack

 +----------------------------+

 stack ->! !

0A, ELN – Test for end of line

The ELN procedure pushes a Boolean item on the stack which is true if an end of line

condition exists.

 (* enters boolean end of line on stack

 Stack layout :

31

 start end

 ! !

 +----------------------------+

 stack ->! boolean (1 if endofline) !

 +----------------------------+

 ! !<- stack

0B, STP – Stop

The STP procedure halts execution.

0C, ODD – Test integer for odd.

The ODD procedure pulls a 2-byte integer off the stack and pushes a Boolean item

onto the stack which is true if the integer is odd.

enters boolean true on stack if value on stack is odd

 Stack layout :

 start end

 ! !

 +----------------------------+

 stack ->! value/ result (1 if odd) !<-stack

 +----------------------------+

 ! !

OD : RSFRWW ;

 OE: RSFRWW reset rewrite file

resets or rewrites file

 filename as string on stack

 Stack layout :

 start end

 ! !

 +----------------------------+

 ! address of strng !<-- stack

 +----------------------------+

 ! length of strng !

 +----------------------------+

 stack ->! !

 OF : STT status I/O

enters status of file on stack for current filenumber

 Stack layout :

 start end

 ! !

 +----------------------------+

 stack ->! value/ result (1 if odd) !

 +----------------------------+

32

 ! !<-stack

 10 : CLS closefile

33

CAP Call Assembly Procedure

A way to call any system dependent and hardware dependent routine.

Syntax

PROCEDURE <name> {< parameter list>} ; extern = <address>

Where

- name is the internal name of the procedure in the Pascal[program

- address is the location of the routine in memory, to be supplied outside of the

Pascal program. As Pascal-M is a 16 bit only compiler, this limits addressing

space to 64K

-

At entry the routine is free to perform any action.

The optional parameter list allows to pass data and variables to the called routine.

The routine is responsible for the interpreter stack handling, see the M-code

instructions what to expect on the stack and how to return values.

On return the routine must remove the 2 bytes of the interpreter stack containing the

called address.

Examples for V1 of the Pascal-M compiler KIM-1 interpreter.

 .org $00C0 ; because the compiler knows this

 ;

proc1 lda #$00 ; procedure ttyin ;extern = $00C0

;

 sta setin

 jmp procex

 nop

proc2 lda #$01 ; procedure sethsr ;extern =

$00C8 ;

 sta setin

 jmp procex

 nop

proc3 lda #$00 ; procedure ttyout ;extern =

$00D0 ;

 sta setout

 jmp procex

 nop

proc4 lda #$01 ; procedure sethsp ;extern =

$0058

 sta setout

procex jsr pull2

 jmp loop

34

Implementation of CAP in KIM-1 6502 interpreter

 ;

 ; BB CAP

 ;

cap ldx #$00

 lda (pc,x)

 sta tmp2l2 + 1

 ldx #pc

 jsr incr ; pc := pc + 1

 lda (pc,x)

 sta tmp2l2

 ldx #pc

 jsr incr

 jmp (tmp2l2) ; jump to new address

 ;

35

Compiler error messages

 2 Syntax: identifier expected

 3 Syntax: Program expected

 4 Syntax: ")" expected

 5 Syntax: ":" exepected

 6 Syntax: illegal symbol

 7 Syntax: actual parameter list

 8 Syntax: OF expected

 9 Syntax: "(" expected

 10 Syntax: type specfication expected

 11 Syntax: "[" expected

 12 Syntax: "]" expected

 13 Syntax: END expected

 14 Syntax: ";" expected

 15 Syntax: integer expected

 16 Syntax: "-" expected

 17 Syntax: BEGIN expected

 18 Syntax: error in declaration part

 19 Syntax: error in field list

 20 Syntax: "," expected

 21 Syntax: "*" expected

 50 Syntax: "error in constant

 51 Syntax: ":=" expected

 52 Syntax: THEN expected

 53 Syntax: UNTIL expected

 54 Syntax: DO expected

 55 Syntax: TO/DOWNTO expected

 56 Syntax: IF expected

 58 Syntax: ill-formed expression

 59 Syntax: error in variable

101 Identifier declared twice

102 Low bound exceeds high-bound

103 Identifier is not a type identifier

104 Identifier not declared

105 Sign not allowed

106 Number expected

107 Incompatible subrange types

110 Tag type must be an ordinal type

111 Incompatible with tag type

113 Index type must be an ordinal type

115 Base type must be scalar or subrange

116 Error in type of procedure parameter

117 Unsatisfied forward reference

118 Forward reference type identifier

119 Forward declared : repetition par. list

120 Function result: scalar,subrange,pointer' ;

36

122 Forward declared: repetition result type' ;

123 Missing result type in function declar.

125 Error in type of standard function par.

126 Number of parameters disagrees with decl' ;

129 Incompatible operands

130 Expression is not of SET type

131 Test on equality allowed only

132 Inclusion not allowed in set comparisons' ;

134 Illegal type of operands

135 Boolean operands required

136 Set element must be scalar or subrange

137 Set element types not compatible

138 Type must be array

139 Index type is not compatible with decl.

140 Type must be record

141 Type must be pointer

142 Illegal parameter substitution

143 Illegal type of loop control variable

144 Illegal type of expression

145 Type conflict

147 Case label and case expression not comp.' ;

148 Subrange bounds must be scalar

149 Index type must not be an integer

150 Assignment to standard function illegal

152 No such field in this record

154 Actual parameter must be a variable

155 Control variable declared interm. level

156 Value already as a label in CASE

157 Too many cases in CASE statement

160 Previous declaration was not forward

161 Again forward declared

169 SET element not in range 0 .. 63

170 String constant must not exceed one line' ;

171 Integer constant exceeds range (32767)

172 Too many nested scopes of identifiers

173 Too many nested procedures/functions

174 Index expression out of bounds

175 Internal compiler error : standard funct' ;

176 Illegal character found

177 Error in type

178 Illegal reference to variable

179 Internal error : wrong size variable

180 Maximum number of files exceeded

